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Thermal chain model of electrorheology and magnetorheology

James E. Martin
Sandia National Laboratories, Albuquerque, New Mexico 87185-1421

~Received 27 March 2000; published 27 December 2000!

Steady shear simulations of electrorheology~ER! and magnetorheology~MR! in a uniaxial field are pre-
sented. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the
absence of thermal fluctuations, the expected shear thinning viscosity is observed and a striped phase is seen to
rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian
motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase even-
tually disappears, even when the fluid stress is still high. To account for the uniaxial steady shear data we
propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR
fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical
prediction for the thermal effect.
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I. INTRODUCTION

The rheology of electrorheological~ER! and magne-
torheological~MR! suspensions is characterized by a sh
thinning viscosity, but the mechanism by which this occu
is still at issue, especially when thermal fluctuations pla
significant role. To investigate this, we have conduc
three-dimensional~3D! Brownian dynamics simulations o
the field-induced rheology of suspensions subjected
uniaxial fields. When thermal fluctuations are small the f
mation of a striped phase is observed, in which sheets f
orthogonal to the axis of fluid vorticity of the shearing flui
But as thermal fluctuations increase in a uniaxial field,
striped phase disappears well before the fluid stress does
the stress is reduced most greatly at the lowest shear ra
thermal chain model is developed to describe these d
which is an extension of the athermal chain model@1#.

There have been a number of interesting simulation s
ies of field-induced rheology in a uniaxial field. Whittle@2#
developed a 3D Brownian dynamics simulation method w
N5216 particles in steady shear and found the formation
a striped phase, which was thought possibly an artifact of
cyclic boundary conditions in these small scale simulatio
Melrose@3# conducted free draining~no hydrodynamic inter-
actions! 3D Brownian dynamics simulations in steady she
with 108 particles at 31 vol. %, and determined a phase
gram inl, Pe space, wherel is the dimensionless ratio of th
dipolar interaction energy to the thermal energy, and P
the Peclet number, the ratio of the hydrodynamic forces
the thermal forces. Melrose found that when the Mas
number—the ratio of the hydrodynamic to dipolar forces
exceeded the critical Mason number, above which partic
cannot chain, a sheared string phase formed. At lower
and for largel, a layered flowing crystalline phase forme
which is also known as a striped phase. At low values ol,
and low Pe, only a disordered liquid phase was found. St
computations showed a shear thinning viscosity. This w
was later extended@4# to larger system sizes (N5256), with
similar conclusions, and finally to particle volume fractio
of 10% and 50%, still larger systems (N5500), and hard
sphere interactions@5#. Melrose found that the smaller-than
1063-651X/2000/63~1!/011406~9!/$15.00 63 0114
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expected shear thinning exponents sometimes observe
experiments at lowl @6# were due to thermal fluctuations. A
the volume fraction of 50% a layered phase was not fou
The work of Melrose was continued by Guoet al. @7# who
obtained consistent results.

Bonnecaze and Brady@8# conducted 2D athermal ‘‘Stoke
sian’’ dynamics simulations, with a highly accurate trea
ment of the hydrodynamic and electrostatic interactions. S
tem sizes were consequently small—25 particles—and
course, a striped phase could not form, but they did find
expected shear thinning viscosity. Thermal fluctuations w
later added,@9# and shear thinning exponents smaller th
1.0 were observed, in agreement with the results of Melro
A phenomenological description of the thermal effect w
argued, in a physical picture where shear flow is caused
particles hopping out of potential wells.

Work on oscillatory shear appears to be restricted
Parthasarathy and Klingenberg, who, in addition to work
steady shear@10#, conducted 2D athermal dynamics simul
tions in oscillatory shear withN5250 particles@11#. Simu-
lations with and without hydrodynamics interactions demo
strated that hydrodynamic interactions do not play
significant role. At large strain amplitudes they found no
linearities that agree well with the results of light scatteri
measurements@12# and with the kinetic chain model@1#.

II. SIMULATION METHOD

To study field-induced rheology we have extended the
Brownian dynamics simulation method reported for struct
formation in quiescent induced dipolar suspensions@13# to
include steady shear flow. Particles are treated as essen
hard spheres with induced dipolar interactions, Stokes f
tion against the solvent, and Brownian motion. Hydrod
namic interactions are not included, so these simulations
respond to the so-called ‘‘free-draining’’ limit. The resul
presented here are obtained from a simulation method de
oped to predict the evolution of large,N510 000 particle
systems over short times. This method has time comple
O(N), but gives coarsening results that are indistinguisha
from a separate, more directO(N2) simulation developed to
©2000 The American Physical Society06-1
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JAMES E. MARTIN PHYSICAL REVIEW E 63 011406
predict the evolution of smaller systems over longer tim
Cyclic boundary conditions are used in thex and y direc-
tions, and semi-hard boundaries~discussed below! are used
normal to thez axis, which is the direction of the applie
field. Because image charges are not included, these sim
tions correspond more closely to magnetorheological flu
but we doubt that image charges play a significant role
real systems, even though the image charges do eliminat
capping charge, because the role of defects appears t
much larger. The size of the simulations leads to structu
whose scale of coarseness is much smaller than the sim
tion volume, minimizing the effect of the cyclic bounda
conditions.

A. Brownian dynamics

To describe our simulations we start with the equation
motion for thei th particle,

mai5Fh~vi !1(
j Þ i

Fhs~r i j !1(
j Þ i

Fd~r i j !1Fbound~zi !1FB ,

~1!

whereFh is the hydrodynamic Stokes force,Fhs is the quasi-
hard-sphere force,Fd is the dipolar force,Fbound is the inter-
action force of the particles with the bounding surfaces n
mal to the applied field, which is in thez direction,FB is the
Brownian force, discussed below, andr i j is the vector be-
tween the centers of spheresi and j.

The Stokes force on a sphere of radiusa is Fh(vi)5
2z(vi2vf), wherevf is the fluid velocity,vi is the particle
velocity, and the friction factor isz56ph0a, assuming stick
boundary conditions, withh0 the solvent viscosity. In stead
shear the fluid velocity isvf5zġ x̂. The particles are modele
as quasi-hard-spheres, with a repulsive force essentially
pendent on thegap between particles,Fhs(r i j )5A/(r i j
2cd)a, whered is the particle diameter anda56 and c
50.97 are constants. The parameterA is then chosen in orde
to give zero interaction force when two particles align
along thez axis, and interacting with the dipolar force, a
separated byr i j 5d. This choice of parameters gives a go
compromise between run time and the precision by wh
particle boundaries are defined. For example, if one wer
choosec50.99, andA accordingly, the particle boundarie
would be slightly more precise, but the gradient of the fo
would be much larger at contact, which would require
smaller discrete time step. This parameterA depends on the
magnitude of the dipolar interaction, so we will not specify
until we convert to a dimensionless equation.

In the point dipole approximation,@14# the potential of
interaction between two polarizable spheresi and j whose
line of centers makes an angleu i j to the applied field, and
whose centers are separated by a distancer i j is

V~r i j !52aS d

r i j
D 3

~3 cos2 u i j 21!. ~2!

For dielectric particles in an electric field a
5 1

8 p2/4pa3«0kc where the particle dipole moment isp
54pa3«0kcbE0 , and the dielectric contrast factor isb
5(kp2kc)/(kp12kc) in terms of the dielectric constants o
the particle and continuous~liquid! phases, and«058.854
01140
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310212F/m is the vacuum permittivity@14#. Combining
gives the standard resulta5 1

2 p«0«ca
3b2E0

2. For a suspen-
sion of spherical magnetic particles in a magnetic field,a
5 1

8 m0km,cm
2/4pa3. For magnetically soft particles th

magnetic moment ism54pa3bmH0 , in terms of the mag-
netic contrast factor bm5(km,p2km,c)/(km,p12km,c),
wherekm,c is the relative permeability~to the vacuum! of the
continuous~liquid! phase,km,p is the relative permeability of
the particles, andm054p31027 H/m is the vacuum perme
ability @14#. Combining these gives an expression analog
to the dielectric case,a5 1

2 pm0km,ca
3bm

2 H0
2. ~Note in the

magnetic case that although the expression fora is perfectly
analogous to the electric case, the expression for the m
netic dipole is not, due to the fact that the magnetization
the units of the magnetic fieldH, whereas the polarization
has the units of the displacement fieldD.!

Differentiating the potential gives the interaction force

Fd~r i j !52
f c

2 S d

r i j
D 4

@~3 cos2 u i j 21! r̂ i j 1sin 2u i j û i j #,

~3!

wheref c is the force at contact between two spheres align
with the field. Note that although the radial component of t
dipolar force is attractive only whenu,54.7°, the tangentia
component of the force will always lead to chaining in
system with finite noise. Heref c is the interaction force be
tween two particles, wheref c5 3

2 p«0kca
2b2E0

2 for dielec-
tric particles and f c5 3

2 pm0km,ca
2bm

2H0
2 for magnetic

particles.
The interaction force with the boundaries is intentiona

weak to reduce the effect of finite simulation volume. Th
force increases linearly as the particle enters the electr
e.g., at the lower boundary it is given by the relatio
Fbound5a(12zi /a) for zi<a, wherea is a stiffness param-
eter that is adjusted to be just large enough to prevent
ticles from passing through the boundary.

Finally, the fluctuating Brownian force is given b
FB(t)5 f BRt(t), wheret is the correlation time of this force
as described in Appendix A. This force gives a particle d
fusion coefficientDt5( f B /z)2t, and the relationship of the
Brownian term to the dimensionless parameterl
5 2

3 a fc /kBT will be described below.

B. Dimensionless units and temperature scale

Dropping the inertial term leads to a set of coupl
Langevin equations that for steady shear can be express
terms of the dimensionless variables,

]r i8

]t8
532Mnzi8x̂1(

j Þ i
fhs~r i j8 !1(

j Þ i
fd~r i j8 !

1fbound~zi8!1J8Rt/t1
. ~4!

The Mason number is defined as Mn5h0ġ/2«0kcb
2E0

2 for a
suspension of dielectric particles and as M
5h0ġ/2m0km,cbm

2H0
2 for a suspension of magnetic pa

ticles. The spatial variables are normalized such that the
ticle diameter is unity,r 85r /d, and the time variablet8
5t/t1 is normalized by the characteristic timet1
6-2
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THERMAL CHAIN MODEL OF ELECTRORHEOLOGY AND . . . PHYSICAL REVIEW E 63 011406
532Mn/ġ, which is independent of particle size. Th
choice of normalized variables gives fd(r i j8 )5

2r i j8
24@(3 cos2 uij21)r̂ ij1sin 2uij ûij#. The dimensionless

hard sphere force for the uniaxial case is given byfhs(r i j8 )
53.031029/(r i j8 20.97)6, and the boundary force at th
lower boundary is given byfbound5a8(12zi8) for zi8<1/2
where dimensionless stiffness parameters ofa8;10.0 pre-
vent particles from escaping the simulation volume, yet
soft enough to reduce finite size effects.

The dimensionless time we use isDt85Dt/t1 . For the
electric field caset1516h0 /«0kcb

2E0
2 which for a viscos-

ity of 1.0 cp, an applied field of 1.0 kV/mm, andkcb
252,

t1'1023 s, so one dimensionless time unit is about a mi
second. For the magnetic field case the dimensionless tim
t1516h0 /m0km,cbm

2H0
2. For a suspending liquid with a

viscosity of 1 cp, an applied field ofH053.58 A/m ~45 Oe!,
mc51 andbm51 one dimensionless time unit is the sam
about a millisecond. Throughout this paper we use the c
vention that one dimensionless time unit is 1.0 ms.

In Eq. ~4! Brownian motion enters asJ8Rt/t1
, where the

dimensionless constantJ852 f B / f c . In terms of the dimen-
sionless parameterl5 2

3 a fc /kBT the dimensionless therma
force is thusJ854l21A2tD/3t where the characteristic dif
fusion time istD5a2/6Dt . Using the easily derived relatio
tD /t5 1

24 J822(t1 /t)2 then givesl5 2
3 J822(t1 /t). To re-

move the effect of the correlation time on temperature
define the parameterJ5J8/At/t1 to obtainl5 2

3 J22. The
simulations we report are over the rangeJ50.1020.45,
which thus corresponds to the rangel566.723.3.

In our simulation method we drop the effect of partic
inertia, which raises the issue of determining over what
gime of particle sizes we can expect this approximation to
correct. When a suspended particle in a fluid is acted u
by an constant external force, the time needed for the par
to accelerate to a fixed terminal velocity ist05m/6pah0 ,
wherem is the particle mass; in terms of the particle dens
r this time ist052ra2/9h0 . For an ER fluid consisting of 1
mm diameter particles of density 2.5 g/cm3, in a suspending
fluid with a viscosity of 1.031022 poise, this acceleration
time is t050.14ms. Now consider how far a particle migh
move, relative to its own diameter, in this time. The termin
velocity of the particle is obtained by balancing the elect
static force acting on it by the hydrodynamic drag. The el
trostatic force between two particles is at a maximum wh
the two particles are in contact along thez axis, and in this
casef c5 3

2 p«0kca
2b2E0

2. The distanceDz a particle under
this force can travel in the time t0 is Dz/2a
5( f c/12pa2h0)t0 . In an applied field of 1.0 kV/mm, with
kcb

252, we obtainDz/2a51.531024. Thus in this circum-
stance the particle has reached terminal velocity after mov
only 0.015% of its diameter, and inertia can be safely
nored. BecauseDz/2a}r(aE0 /h0)2 inertial effects can be-
come significant for very large, dense particles exposed
large fields in a low viscosity fluid, such as can occur in M
fluids.

C. Fluid stress

A simple argument for the fluid stress is as follows@15#.
Let vk

0 be the unperturbed velocity of the fluid at the locati
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of thek-th particle. The work done per unit time by the flu
on this particle iswk52Fk•vk

0. The increase in energy los
per unit time is, per unit volume,w5(3f/4pa3)^2Fk

•vk
0&. In simple shear the unperturbed fluid velocity field

given by v05ġzx̂ so w5(3fġ/4pa3)^2Fx,kzk&. To relate
this energy dissipation per unit volume to the suspens
viscosity consider two parallel plates of areaA separated by
a distanceh moving relative to each other at a shear veloc
uvu5ġh. The frictional force on the moving plate isF
5hġA and the total work per unit time on the volumehA is
Fuvu5hġ2hA. Thus the excess work per unit volume due
the particles isw5(h2h0)ġ25Dsġ, which combined with
the above expression for the work gives the expression
the excess stressDs5(3f/4pa3)^2Fx,kzk&. In terms of the
normalized coordinates in Eq.~4!, the stress is

Ds5~3f f c/4pa2!^2 f x,kzk8&, ~5!

which is independent of particle size. The dimensionle
field-specific viscosity@1# is

h f[~h2hf!/fh05
9

16
Mn21^2 f x,kzk8&, ~6!

which is the relative viscosity increase due to the appl
field per unit volume fraction of particles, withhf>h0(1
12.5f) the Einstein viscosity of a particle suspension.

III. RESULTS

Simulations in steady shear were done by first allow
the suspension to structure for 25 ms in the field witho
shear. The shear was then turned on at the maximum Ma
number and held for 25 ms. The Mason number was t
progressively reduced over the next 950 ms to explor
range of Mn, and the stress was computed every 0.1 ms

Results of steady shear simulations in a uniaxial field

FIG. 1. Shear simulations in a uniaxial field atf530% show
the stress is nearly independent of Mn forl5`, indicating a shear
thinning viscosity. Brownian motion decreases the stress sig
cantly at low Mn.
6-3
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JAMES E. MARTIN PHYSICAL REVIEW E 63 011406
in Fig. 1 for a 30 vol.% solution and show that the stress
essentially independent of Mason number over the range
vestigated in the absence of Brownian motion, indicating
expected shear thinning viscosityhF;Mn21. In the dimen-
sionless units of this plot, the stress is about 0.25, whic
somewhat lower than one would expect from the ch
model, where this amplitude would be about 0.5–1.0,
pending on whether polydispersity is taken into account.~In
these simulations the stress per unit particle concentratio
essentially constant untilf540 vol. %, whereupon it de
creases with concentration.! As Brownian motion is intro-
duced the stress decreases at low Mason number, with
apparently logarithmic dependence Ds5Ds0@1
1c0 ln c1 Mn# in the region where a dependence on Mn
observed. This will cause the apparent shear thinning ex
nentb of the field-specific viscosityhF;Mn2b to be signifi-
cantly less than 1, perhaps accounting for the trends see
experimental data, where values as small asb>2/3 are found
@6#. In fact, it was suggested in these cited studies that
small exponents were due to the importance ofl, and the
simulations of Melrose@5#, Guo @7# and Baxter-Drayton and
Brady @9# have concluded this as well. In the following w
present a detailed model of thermal fluctuations, based
chain dynamics.

A prominent feature of these simulations is the emerge
of a striped phase@2–5,7# at largel and at concentrations u
to 40 vol. %, Fig. 2. These sheet-like structures are in
plane of the field and flow direction, i.e., orthogonal to t
axis of fluid vorticity, and have also been observed exp
mentally @16#. At small l this phase is not observed, eve
when there is substantial fluid stress. The thermal effect
these simulations are undoubtedly very complex, but
striped phase seems to consist of a sheets of dense chai
in the discussion below we will simply ignore the ove
whelming structural complexities and attempt to gain so
insight into why the thermal effects are greatest at the low
Mason numbers by considering a simplified chain mod
justified in part by the fact that the striped phase only ex
at highl, where thermal effects are not strong.

IV. DISCUSSION

To obtain an understanding of the effect of thermal flu
tuations, we consider the elementary model of a chain

FIG. 2. A striped phase emerges at largel, but not at smalll.
These structures are at the marginal valuel516.7. The left is at
Mn50.08, the right at Mn50.002, and the views are along the fie
direction ~z axis!.
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particles in shear flow, a description that is quite reasona
given that the striped phase does not form when ther
effects are strong. Rather than attempt to develop an accu
description of thermal fluctuations, with the associated al
braic complexities, we focus on the simple case of induc
point dipoles and Stokes friction against the solvent. Lo
field effects, multipolar interactions, and hydrodynamic
teractions, though useful in developing a quantitative mod
are not included, since we do not believe they will chan
the conceptual description we present.

A. Athermal chain model

A few basic aspects of athermal chains@1# must be re-
viewed. We are specifically interested in computing the t
sion in the chain as well as the ‘‘bond’’ angle relative to t
applied field along the contour length of a chain. This pro
lem should be solved self-consistently, but an iterat
method, which starts with a straight chain, is quite accura

Consider an initially linear chain of 2N11 spheres, num-
bered from2N to N, in steady state~zero velocity! inclined
at an angleu0 to the applied field. The shear flow is in thex
direction, and the fluid velocity at positionz is given byvf
5zġ x̂. The hydrodynamic drag on each particle isfs5zvf
where assuming stick boundary conditions on the partic
the friction factor isz56ph0a, with h0 the solvent viscos-
ity and a the particle radius. The hydrodynamically induce
tension in the chain between particlesi 11 andi is

t i5 (
k5 i 1 l

N

fs,k• r̂ i'6ph0a2ġ sinu i cosu0~N22 i 2!. ~7!

The Stokes friction will also introduce a force tangential
the chain, of magnitude

si5 (
k5 i 11

N

fs,k• û i'6ph0a2ġ cosu i cosu0~N22 i 2! ~8!

which also has a strong maximum near the chain center
determine the chain angle in the absence of thermal fluc
tions these forces are balanced against the dipolar force

The angle at the chain center can be computed by bal
ing the tangential hydrodynamic forces with the tangen
dipolar force in Eq.~3!,

tanu058MnN2. ~9!

The variation of the chain angle along its contour length
also obtained by a force balance, with the first-order resu

sinu i5sinu0~12 i 2/N2!. ~10!

Finally, to ensure chain stability the radial component of t
dipolar force must exceed the hydrodynamically induced t
sion, which at the chain center gives the maximum ch
angle

tanuc5A2/3 ~11!
6-4
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THERMAL CHAIN MODEL OF ELECTRORHEOLOGY AND . . . PHYSICAL REVIEW E 63 011406
A chain at this tilt angle we call a critical chain, since it is
the brink of failure, and its length is given by 2N
'(A6Mn)21/2.

At fixed Mason number, and ignoring thermal fluctu
tions, the chain length will increase until the maximum t
angle is attained, at which point further growth will cause t
chain to break at the center, where the tensile forces a
maximum. The presence of chains increases the stress i
fluid by an amount that is approximately the torque dens
in the fluid, as can be shown from Eq.~5!, if one uses tanu
516MnN2/3, which insures that the field-induced torque b
ances the hydrodynamic torque~Appendix B!,

Ds5~3f f c/2pa2!tanu cos2 u ~12!

In an athermal fluid one can expect that the system
evolve to a steady state where chains aggregate to their m
mum stable length, attain the critical angle of Eq.~11!, then
fragment by breaking in the middle, to form chains of h
maximum length that tilt at an angle that is roughly 1/4
the maximum, then reaggregate, etc.

B. Fluctuation-induced fragmentation

The above description ignores the effect of thermal fl
tuations, with the result that the chains are assumed to h
an infinite lifetime if they are beneath their critical angle.
reality, chains will fragment, due to the combined effects
shear and thermal fluctuations. At low particle concent
tions, where the collision processes that allow chains to fo
have long collision times, one would expect that therm
fluctuations would start to prevent the formation of critic
chains when the lifetime of a chain becomes significan
shorter than the time it takes to create a critical chain ath
mally. If the suspension is reasonably concentrated, th
collision times become very short, and the rate limiting s
for the generation of a critical chain, and thus stress, is
time it takes a chain to reach its maximum angle of inclin
tion relative to the applied field, which is roughly the reci
rocal shear rateġ21. For such concentrated suspensions
thus invoke the stipulation that a chain cannot contrib
fully to the fluid stress unless its thermal lifetimet is greater
than the reciprocal shear rate of the solution:

tġ>1. ~13!

This condition is reasonable because of the strong, quad
dependence of the chain angle on the chain length, Eq.~9!:
when two half chains aggregate, they are at a very sm
angle relative to their maximum angle, and it will take a tim
proportional toġ21 for this rotation to occur. Still, we will
ultimately find it necessary to modify this relation.

Thermal fluctuations can cause a chain to break anywh
along its length. If a chain fragments between nodesi and i
11 it will break into two pieces, one of sizeN2 i and one of
size roughlyN1 i . The rate at which the remaining large
chain loses the smaller fragment of sizeN2 i we call G i .
The mass-weighted overall fragmentation rate is then
01140
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N21
N2 i

N
G i . ~14!

The fragmentation rates are then just given by the inve
thermal lifetimes,G i5t i

21, where we expect a standard a
tivation process to determine the lifetime

t i5t0,i exp~DVi /kBT!. ~15!

The computation of the activation energyDVi will be pur-
sued below. The prefactort0,i can be estimated as the time
takes the two chain fragments to diffuse away from ea
other by a distance of roughly the particle radiusa,t0,i
'a2/6Ds,i , where the diffusion coefficientDs,i5DN2 i
1DN1 i is the sum of the diffusion coefficients of the frag
ments. Summing the Stokes friction along the chain, with
hydrodynamic interactions, givesDN2 i1DN1 i5(kBT/z)
3@(N2 i )211(N1 i )21#52DtN/(N22 i 2), whereDt is the
diffusion coefficient of a particle. Again calling the time
takes a particle to diffuse its own radiustD'(a2/6Dt)
5(ph0a3/kBT) we obtain the chain lifetime

t5tDF 4

N (
i 50

N21 S 12 i /N

12 i 2/N2Dexp~2DVi /kBT!G21

. ~16!

In terms of the Peclet number Pe53ph0a3ġ/kBT56lMn,

ġtD5
1

3
Pe. ~17!

To make further progress in this model of parallel dec
channels, we must estimate the activation energies along
chain.

C. Activation energies

Rather than laboring to determine the potential ene
surface of a chain in shear, we shall consider two elemen
rupture mechanisms—tensile and shear—and simply take
lowest activation energy. Implicit in the following is a subt
point: because the prefactors in Eq.~15! are just the chain
rotational diffusion times, which are also the longest rela
ation times of the chain, we shall assume that outside
perturbations we consider the chain has had time to com
mechanical equilibrium.

1. Radial fluctuation

In a tensile break the energy required is that ene
needed to separate the particles sufficiently such that the
dial component of their dipolar interaction force equals t
tension on the chain@1#. The chain will then rupture becaus
the negative curvature of the dipolar interaction insures t
the interaction force monotonically decreases with sepa
tion, allowing the hydrodynamic tension to pull the cha
apart. The chain tension at particlei, Eq. ~7!, is exactly bal-
anced by the radial dipolar force, Eq.~3!, at a particle sepa-
ration we callr * , and it is readily shown, using Eqs.~9! and
~10!, that
6-5
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d

r i*
5S sin2 u i

12
3

2
sin2 u i

D 1/4

. ~18!

This result givesr * 5d when tanui5A2/3, so that when the
center of the chain is at its critical angle it will rupture
contact, just as it should. And as the chain angle decreas
zero, rupture will occur only at infinite separation, since
this case the hydrodynamic tension is zero. The reduced
tivation energy for this rupture mode is then

DVi /kBT5@V~r i* !2V~d!#/kBT

5
1

2
l~3 cos2 u i21!

3H 12Fsin2 u i /S 12
3

2
sin2 u i D G3/4J , ~19!

and the maximum value isl.

2. Tangential fluctuation

A tangential fluctuation will cause chain fragmentation
the fluctuation causes the radial component of the dip
force to be less than the hydrodynamic tension. Balanc
the chain tension, Eq.~7!, with the radial component of the
dipolar force, Eq.~3!, gives an expression for the ruptu
angleu i*

~3 cos2 u i* 21!/sinu i* 52 sinue,i , ~20!

whereue,i is the unperturbed chain angle at thei-th particle,
given from Eqs. ~9! and ~10! by the relation sinue,i
58Mn(N22 i 2)cosu0. If the chain is near its critical angle
then cos2 ui*53/5, whereas if the chain angle is near ze
then cos2 ui*51/3. The reduced activation energy for th
fluctuation is

FIG. 3. A comparison shows that Eq.~22! is a good approxima-
tion to the exact the radial and tangential fragmentation energi
01140
to
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DVi /kBT5@V~d,u i* !2V~d,u i !#/kBT

5
3

2
l~cos2 ue,i2cos2 u i* ! ~21!

and is actually comparable to, but somewhat smaller th
the reduced radial fluctuation activation energy, Eq.~19!,
again having a maximum value ofl.

To proceed, we note, Fig. 3, that a direct comparis
shows that these complex expressions for the fragmenta
activation energies are very closely approximated by
simple expression

DVi /kBT5l~12tanue,i /tanuc!'l

3@12~ tanue /tanuc!~12 i 2/N2!#, ~22!

whereue is theequilibrium chain angle at the chain cente,
in the presence of thermal fluctuations and shear, and is
quantity that we now wish to obtain.

D. Chain angle and size

The chain angle and size can now be obtained. Subst
ing Eq. ~22! into Eq. ~16! gives

t5
tD

V
exp@l~12tanue /tanuc!#, ~23!

where we have passed to the continuum limit to obtain
integral

V54E
0

1 1

11s
exp~2s2l tanue /tanuc!ds. ~24!

Using the condition in Eq.~13!, we obtain, with Eq.~17!,

tanue /tanuc511l21 ln~Pe/3V!, ~25a!

Ne5NcAtanue /tanuc. ~25b!

An exact analytical solution to Eqs.~24! and ~25! is not
apparent, but asymptotic and iterative solutions to this pr
lem are possible. It is helpful thatV appears in the logarithm

3. Small l

For small l, V'2.7520.75l tanue/tanuc . To zeroth
order

tanue /tanuc511l21 ln~aPe!, ~26!

where the parametera'1/8 in our calculation, but really
should be treated as a free parameter, since we have
several estimates in obtaining this, including Eq.~13!. Note
that this approximation is only valid whenl1 ln(aPe)!1.
This severe constraint limits the practical utility of this res
to very smalll, where it is doubtful that an ER or MR effec
occurs.

.

6-6
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4. Large l

For largel we make the approximation that the cha
angle will be close to the critical angle for reasonable Mas
numbers, giving

V54E
0

1 1

11s
exp~2s2l!ds;A4p/l, ~27!

tanue /tanuc511l21 lnS 1

6
PeAl/p D

511l21 ln~MnAl3/p!. ~28!

This solution is surprisingly accurate, as we shall dem
strate, but one should note that for the purpose of compar
to experimental data, an adjustable parameter should be
into the log. Note that the simple dependence on the Pe
number in Eq.~26! is significantly altered.

5. Iterative solution

It is possible to solve Eqs.~24! and~25! numerically, but
this would require solving the integral in Eq.~24! a tremen-
dous number of times. A better approach is to use the
proximation, which is exact forr[l tanue/tanuc@1,

V54E
0

1 1

11s
exp~2s2r!ds'4E

0

1

exp~2s2r!ds

'4/ A4 11~4r/p!2. ~29!

This numerical approximation is really better than it look
because the factor dropped from the integral decrea
roughly linearly from 1.0 to 0.5 on the interval@0, 1#, and
becomes completely unimportant whenr@1. Solving Eqs.
~25a! and ~29! iteratively shows that Eq.~28! is a good ap-
proximation.

6. Limits

We first note that the ER/MR effect, within the context
the chain model, only occurs for Mason numbers sma
than Mn* 5 1

8 A2/3'0.1. Then note that our two approxima
solutions, Eqs. 26 & 28, are identical whenl'1.77. Eq.~28!
indicates that the ER/MR effects become negligible whe
1l21 ln(Mn* Al3/p)50, that isl'1.9. Equation~26! at
best has a very restricted domain of utility, and we will no
focus on Eq.~28!.

One can expect to observe a field-induced rheology tha
not reduced by thermal fluctuations when

Ap/l3<Mn<Mn* . ~30!

A full ER/MR effect is possible when these limits are equ
l'6.7. Equation~30! seems counter-intuitive, because
shows that the regime where temperature plays no rol
quite modest, even for reasonable values ofl. The regime
where an ER/MR effect can be observed, but is affected
thermal fluctuations, is

Ap/l33e2l<Mn<Min~Ap/l3,Mn* !. ~31!
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This range of Mn can be quite large for largel, making the
slope of the thermal effect difficult to measure. For largel
the slope of the thermal effect will be so small as to
unobservable. Let us suppose an experimental criterion o
least a 10% change in stress per decade change in
Roughly speaking, Eq.~31! shows the range of the ER/MR
effect to be overl/2.3 decades of Mn. Thus our criterion
2.3/l>0.1, orl<23.

E. Self-consistent model

The simple description we have presented is not s
consistent, because Eq.~13! stipulates that the thermal life
time be independent of the equilibrium chain angle. The s
consistent condition is

tġ'tanue , ~32!

whereupon Eq.~25a! becomes the transcendental equatio

tanue /tanuc1l21 ln~ tanue /tanuc!

511l21 lnS 1

3
Pe/V tanucD ~33!

andV is still given by Eq.~29!. An immediate consequenc
of this is that whenl tanue!tanuc , the relationship tanue
}Pe3exp(l) obtains, using Eq.~26!. @Thus at very low Mn
the viscosity is proportional tohF}l exp(l)#. This linear in
Mn relationship is followed by a logarithmic dependence
the chain angle on Mn, as before. The effect of this se
consistency on the tanue curves is quite significant, as show
in Fig. 4. The largest changes occur at smalll, which is
where experiments will most readily detect thermal effec
To some extent, this condition of self-consistency is pro

FIG. 4. Solutions to the self consistent Eq.~33! ~curves! are
compared to Eq.~28!. In each case the feature of low chain ang
and thus stress, at small Mn is observed, but the self-consis
solutions soften the effect.
6-7
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lematic; when the equilibrium chain angle becomes v
small, the lifetime in Eq.~32! will be much shorter than the
chain collision times, so that chains will not form in the fir
place. From primitive considerations of shear-driven agg
gation we deduce that the chain collision time is of ord
tġ'f21, suggesting that using the self-consistency con
tion at low chain angles might not be appropriate.

F. Comparison to simulations

The thermal chain model does a good job of predict
the trends seen in Fig. 1, including the logarithmic dep
dence on Mn. A parameter-free collapse of all the simulat
data on axes suggested by Eq.~28! is also reasonably suc
cessful, as shown in Fig. 5. To scrutinize the agreemen
further detail would require the compilation of more simu
tion data, to obtain better statistics. Still, it must be emp
sized that a complete description of thermal effects sho
address the issue of the chain growth kinetics.

V. CONCLUSIONS

In steady shear a striped phase readily forms for largel,
and when Mn is large. For smalll, the striped phase doe
not form, even at the highest Mn. Forl;15 a striped phase
only forms at the highest Mn. The effect of thermal fluctu
tions on the uniaxial field-induced rheology is essentia
logarithmic in Mn, and can be accounted for by the therm
chain model.
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APPENDIX A: CORRELATED THERMAL
FLUCTUATIONS

There are a number of problems in implementing Brow
ian motion into a simulation where one is integrating a fi
order differential equation, so a description of how we cho
to do this is useful. This is not the only possible approa
but it is a method that allows one to mimic the effect
particle inertia without resorting to a second order differe
tial equation.

The equation of motion of a Brownian particle is@17#

mv̇52zv1FB~ t !, ~A1!

wherev is the particle velocity,m is the particle mass, and
z56ph0a is the friction coefficient of a particle of radiusa
against a liquid of viscosityh0 . FB(t) is a stochastic force
that is normally considered to have a time correlation fu
tion that is a delta function. The time correlation function
the diffusing particle is@17#

^v~0!•v~ t !&5~3kBT/m!exp~2t/t! ~A2!

where the relaxation time ist5m/z. Using the Kubo rela-
tion @17#

Dt5
1

3 E0

`

^v~0!•v~ t !&dt ~A3!

then gives the Stokes-Einstein relation for the translatio
diffusion coefficientD15kBT/z. Thus it is the persistence o
motion of a particle acted upon by a uncorrelated stocha
force that is responsible for a finite diffusion coefficient.
some sense the situation is subtle; the diffusion coefficien
a particle is independent of the particle mass, yet the re
ation time is proportional to the mass, and the amplitude
the velocity autocorrelation function is inversely propo
tional to the mass.

The relaxation time for a 1mm diameter silica sphere in
water is 5.531027 s, but we would expect an applied field o
1.0 kV/mm to structure silica spheres in such a solution
millisecond time scales. In our simulations we set the d
crete time step to a maximum of 2.031025 s, so the natural
time scale for Brownian motion is thus much faster than
time scales we wish to investigate. A completely physi
simulation of field-induced rheology with Brownian motio
is not feasible and a practical method is needed.

We start with the first-order differential equationzv
5FB(t), obtained by dropping the inertial term. IfFB(t) is
considered to be a stochastic force with a delta function t
correlation function, then the diffusion coefficient of a pa
ticle will now depend on the discrete time step used to so
the equation. For example, consider the simple one dim
sional case whereFB(t)5 f Bsi , andsi is a simple uncorre-
lated random variable that is either61 during thei-th time
step. Then during the timeDt the particle will move a dis-

s
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tanceDx5( f B /z)Dt. Over a total timet the number of steps
will be N5t/Dt and from the theory of random walks th
mean square displacement will be^x2&5NDx25( f B /z)2Dt
•t. Thus the diffusion coefficientDt51/2(f B /z)2Dt has an
unphysical dependence on the discrete time step. A sim
way to handle this is to scale the amplitude of the Brown
force by f B}Dt21/2. However, because the time step is
lowed to vary in our simulation method, this can lead
divergent force amplitudes that can potentially create sta
ity problems when two ‘‘hard’’ spheres are nearly in conta

To avoid stability problems we have taken a different a
proach. Let us write the Brownian force asFB(t)5 f BRt(t)
whereRt(t) is a time-correlated random variable whose a
tocorrelation function has a decay timet. Using the Kubo
relation we then haveDt5( f B /z)2*0

`^Rt,x(0)Rt,x(t)&dt
where we have used the isotropy of space to obtain^Rt(0)
•Rt(t)&53^Rt,x(0)Rt,x(t)&. If our time correlated variable
is normalized such that^Rt,x(0)Rt,x(0)&51, then the relax-
ation time ist5*0

`^Rt,x(0)Rt,x(t)&dt, and Dt5( f B /z)2t.
The amplitude of the Brownian force is nowf B

25kBTz/t,
and so can be controlled by a judicious selection oft.

To construct the correlated random variable we start w
the primitive uncorrelated random variablesi , with ^sisj&
5d i j . Define the functionG i5(12«)G i 211«si and note
that by a straightforward calculation the exponential corre
tion ^G iG i 1k&5@«/(22«)#(12«)k is obtained. If we letRi

5G iA(22«)/« then ^RiRi 1k&5(12«)k and t'«21. In
practice, the correlation time is chosen to be larger than
maximum discrete time step of 2ms, but smaller than the m
time scale of structural evolution. We chose 10ms, so on
times scales short compared to this ballistic motion occ
and the effect of particle inertia on diffusion is obtain
without resorting to a second-order differential equation.

APPENDIX B: STRESS IN THE CHAIN MODEL

The use of Eq.~5! to compute the stress of a chain
sufficiently subtle as to warrant clarification. It is often
convenient simplification to represent a chain as linear, w
01140
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nearest neighbor dipole interactions. But if this is done, o
can easily show that the dipolar force on thei th particle,
which is the sum of the dipolar forces due to its near
neighbors, is zero. Thus the quantity in the brackets is t
apparently zero in this linear approximation. This dire situ
tion can be remedied by lumping the two particle forces—
dipolar and hard sphere—into a single total force acting
the i th particle,Fi . This force is due to the interactions wit
both neighbors. Because inertia is negligible, this force
exactly balanced by the Stokes friction against the solve
Fi2z(vi2vf)50. For a stationary chain the particle veloci
is zero andFi52zvf . To counterbalance this force a re
chain simply must have curvature, so that the tangential
polar interactions caused by its neighbors are not equal
opposite: an initially linear chain in shear flow will simpl
deform until it assumes the shape closely given by Eq.~10!.

This problem is avoided by simply using the suppositi
that the chain is stationary, then for any chain shape use
~5! or its dimensioned equivalent, to compute the stress w
Fi52zvf . Usingzk52a cosu, Eq. ~5! becomes

Ds518fh0ġ cos2 u^k2&, ~B1!

Then the relation

^k2&5N21(
k51

N

k2'
1

3
N2

is used, which along with the result tanu516
3 MnN2, gives

Eq. ~12!, which in electrostatic units is the resultDs
5 9

8 f«0kcb
2E0

2 sin 2u published in a previous paper@1#.
~This expression for the chain angle is not the same as
~9!, which is for the central angle of a curved chain, t
distinction being that tanu516

3 MnN2 insures that the hydro
dynamic and electrostatic torques balance for a rigid cha!.
A careful thinker will note that at the central particle in a re
chain with an odd number of particles, the dipolar and h
sphere forces exactly balance. This implies that this part
must move at the fluid velocity at that point, which is
course correct.
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