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Thermal chain model of electrorheology and magnetorheology
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Steady shear simulations of electrorheold&R) and magnetorheolog§MR) in a uniaxial field are pre-
sented. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the
absence of thermal fluctuations, the expected shear thinning viscosity is observed and a striped phase is seen to
rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian
motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase even-
tually disappears, even when the fluid stress is still high. To account for the uniaxial steady shear data we
propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR
fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical
prediction for the thermal effect.

DOI: 10.1103/PhysRevE.63.011406 PACS nuner4d7.50+d

[. INTRODUCTION expected shear thinning exponents sometimes observed in
experiments at lowx [6] were due to thermal fluctuations. At
The rheology of electrorheologicaER) and magne- the volume fraction of 50% a layered phase was not found.
torheological(MR) suspensions is characterized by a sheadhe work of Melrose was continued by Ges al. [7] who
thinning viscosity, but the mechanism by which this occursobtained consistent results.
is still at issue, especially when thermal fluctuations play a Bonnecaze and Bradg] conducted 2D athermal **Stoke-
significant role. To investigate this, we have conductedsian” dynamics simulations, with a highly accurate treat-
three-dimensiona(3D) Brownian dynamics simulations of ment of the hydrodynamic and electrostatic interactions. Sys-
the field-induced rheology of suspensions subjected té€m sizes were consequently small—25 particles—and of
uniaxial fields. When thermal fluctuations are small the for-course, a striped phase could not form, but they did find the
mation of a striped phase is observed, in which sheets forfixpected shear thinning viscosity. Thermal fluctuations were
orthogonal to the axis of fluid vorticity of the shearing fluid. later added[9] and shear thinning exponents smaller than
But as thermal fluctuations increase in a uniaxial field, thel.0 were observed, in agreement with the results of Melrose.
striped phase disappears well before the fluid stress does, aAdPhenomenological description of the thermal effect was
the stress is reduced most greatly at the lowest shear rate. &gued, in a physical picture where shear flow is caused by
thermal chain model is developed to describe these dat&®articles hopping out of potential wells.
which is an extension of the athermal chain mddél Work on oscillatory shear appears to be restricted to
There have been a number of interesting simulation studParthasarathy and Klingenberg, who, in addition to work in
ies of field-induced rheology in a uniaxial field. Whitfla] ~ steady shed10], conducted 2D athermal dynamics simula-
developed a 3D Brownian dynamics simulation method withtions in oscillatory shear wittN=250 particleg11]. Simu-
N=216 particles in steady shear and found the formation ofations with and without hydrodynamics interactions demon-
a striped phase, which was thought possibly an artifact of thétrated that hydrodynamic interactions do not play a
cyclic boundary conditions in these small scale simulationssignificant role. At large strain amplitudes they found non-
Melrose[3] conducted free drainino hydrodynamic inter- linearities that agree well with the results of light scattering
action3 3D Brownian dynamics simulations in steady shearmeasurementsl2] and with the kinetic chain mod¢L].
with 108 particles at 31 vol. %, and determined a phase dia-
gram in?\, Pe space, whereis the dimensionless ratio of the _ Il. SIMULATION METHOD
dipolar interaction energy to the thermal energy, and Pe is
the Peclet number, the ratio of the hydrodynamic forces to To study field-induced rheology we have extended the 3D
the thermal forces. Melrose found that when the MasorBrownian dynamics simulation method reported for structure
number—the ratio of the hydrodynamic to dipolar forces—formation in quiescent induced dipolar suspensipt to
exceeded the critical Mason number, above which particlegiclude steady shear flow. Particles are treated as essentially
cannot chain, a sheared string phase formed. At lower Miard spheres with induced dipolar interactions, Stokes fric-
and for large\, a layered flowing crystalline phase formed, tion against the solvent, and Brownian motion. Hydrody-
which is also known as a striped phase. At low valuea,of namic interactions are not included, so these simulations cor-
and low Pe, only a disordered liquid phase was found. Stres®spond to the so-called “free-draining” limit. The results
computations showed a shear thinning viscosity. This workpresented here are obtained from a simulation method devel-
was later extendefdt] to larger system sizedN=256), with  oped to predict the evolution of larg&=10000 particle
similar conclusions, and finally to particle volume fractions systems over short times. This method has time complexity
of 10% and 50%, still larger system&&500), and hard O(N), but gives coarsening results that are indistinguishable
sphere interactions]. Melrose found that the smaller-than- from a separate, more direG(N?) simulation developed to
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predict the evolution of smaller systems over longer timesx 10" 1?F/m is the vacuum permittivityf14]. Combining
CyCliC bOUndary conditions are used in tkeand Yy direc- gives the standard resuﬂ:% wsogca:sBZE%_ For a suspen-
tions, and semi-hard boundarigdiscussed beloware used  sjon of spherical magnetic particles in a magnetic fietd,
normal to thez axis, which is the direction of the applied —1 , . " m%47a3. For magnetically soft particles the
field. Because image charges are not included, these Simu'ﬁﬁagneti’é' moment isn=4maB,H,, in terms of the mag-
tions correspond more closely to magnetorheological fluidSyetic  contrast  factor ’BM:(;M o K ) (Kot 2K,,.0),

but we doubt that image charges play a significant role ifyhere, ,  is the relative permeabilitgto the vacuumof the
real systems, even though the image charges do eliminate tl&%ntinuous(liquid) phasex, , is the relative permeability of
capping charge, because the role of defects appears to hg, particles, anduo= 47X 10" 7 H/m is the vacuum perme-

much larger. The size of the simulations leads to structuregyjiry; 114]. Combining these gives an expression analogous
whose scale of coarseness is much smaller than the simulgs 1+« qielectric caseq= 3% muor, a3B2H2. (Note in the
tion yqlume, minimizing the effect of the cyclic boundary magnetic case that although theﬂeipregsigmfdx perfectly
conditions. analogous to the electric case, the expression for the mag-
netic dipole is not, due to the fact that the magnetization has

the units of the magnetic fielt, whereas the polarization
To describe our simulations we start with the equation ofhas the units of the displacement fiéd)

A. Brownian dynamics

motion for theith particle, Differentiating the potential gives the interaction force
fo/d\* o .
"nai:':h(Vi)JFJ_Zti Fhs(rij)+; Fa(rij) + Foound Z)) + Fa., Fa(rip)=—7% || [(3 co$ 6;;—1)F;; +sin 26; 6,1,
ij
(1) ()

whereF,, is the hydrodynamic Stokes fordg,. is the quasi- Wheref. is the force at contact between two spheres aligned
hard-sphere forces is the dipolar forceF,,,nqis the inter-  with the field. Note that although the radial component of the
action force of the particles with the bounding surfaces nordipolar force is attractive only wheft<<54.7°, the tangential
mal to the applied field, which is in thedirection,Fg is the ~ component of the force will always lead to chaining in a
Brownian force, discussed below, angl is the vector be- system with finite noise. Herg, is the interaction force be-

tween the centers of sphereandj. tween two particles, wherk,= 3 7eox.a2B°E,> for dielec-
The Stokes force on a sphere of radiass F,(v;)= tric particles andf.=3 wMOKM,CaZﬁMZHOZ for magnetic

—{(vi—Vvy), wherevs is the fluid velocity,v; is the particle  particles.

velocity, and the friction factor i§=6m7.a, assuming stick The interaction force with the boundaries is intentionally

boundary conditions, withy, the solvent viscosity. In steady weak to reduce the effect of finite simulation volume. This
shear the fluid velocity ig;=zyX. The particles are modeled force increases linearly as the particle enters the electrode,
as quasi-hard-spheres, with a repulsive force essentially dg.q. at the lower boundary it is given by the relation
pendent on thegap between particlesFn(rij)=A/(rj g = — 41—z /a) for z<a, wherea is a stiffness param-

:cd)“, whered is the particle diameter and=6 andC  gier that is adjusted to be just large enough to prevent par-
=0.97 are constants. The paraméies then chosen in order a5 from passing through the boundary.

to give zero interaction force when two particles aligned Finally
along thez axis, and interacting with the dipolar force, are Fa(t)=fgR.(t), whereris the correlation time of this force,

separated by;;=d. This choice of parameters gives a good o qescribed in Appendix A. This force gives a particle dif-
compromise betyveen run time and the precision by Wh'd}usion coefficientD,= (fg/£)?, and the relationship of the
particle boundaries are defined. For example, if one were Brownian term to the dimensionless parametar

choosec=0.99, andA accordingly, the particle boundaries _ 2 af./kaT will be described below

would be slightly more precise, but the gradient of the force * "~ ¢ B '

would be much larger at contact, which would require a B. Dimensionless units and temperature scale

smaller discrete time step. This parametedepends on the ) .

magnitude of the dipolar interaction, so we will not specify it DroPping the inertial term leads to a set of coupled

until we convert to a dimensionless equation. Langevin equations that for steady shear can be expressed in
In the point dipole approximatior14] the potential of (€rms of the dimensionless variables,

interaction between two polarizable spheresndj whose /

the fluctuating Brownian force is given by

line of centers makes an anglg to the applied field, and &Li,:gzani';(Jrz fhs(ri,j)+z fd(ri’j)
whose centers are separated by a distagces at J#i J#i
d\3 +fooundZ ) +I'R,,.. (4)
V(rij)z—a r_) (3 CO§ 0”_1) (2) bound '
ij

The Mason number is defined as Mﬁ]o:y/ZSOKC,BZE(z) for a

For dielectric particles in an electric fieldae  suspension of dielectric particles and as Mn
=1p?Amrade k. where the particle dipole moment s Iﬂo;y/ZMOK#YCﬁ#ZHS for a suspension of magnetic par-
=47aleqkBEy, and the dielectric contrast factor 8 ticles. The spatial variables are normalized such that the par-
= (rp— K/ (kp+2kc) in terms of the dielectric constants of ticle diameter is unityr'=r/d, and the time variable’

the particle and continuoudiquid) phases, ané0=8.854  =t/r; is normalized by the characteristic time
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=32Mn/y, which is independent of particle size. This
choice of normalized \variables gives fd(ri’j)=

—r (3 cog g;—1)f;+sin24;6;]. The dimensionless
hard sphere force for the uniaxial case is givenfhyri;)
=3.0x10"%(r{,—0.97f, and the boundary force at the
lower boundary is given by,oun=a’'(1—2/) for z/ <1/2
where dimensionless stiffness parametersx6f10.0 pre-
vent particles from escaping the simulation volume, yet are
soft enough to reduce finite size effects.

The dimensionless time we use A’ =At/7,. For the
electric field caser; = 167,/eqkB2Eo> Which for a viscos-
ity of 1.0 cp, an applied field of 1.0 kV/mm, ane.3%=2,
,~10"3s, so one dimensionless time unit is about a milli-
second. For the magnetic field case the dimensionless time i
T1:16770/,LL0KMYCﬂ#2H02. For a suspending liquid with a
viscosity of 1 cp, an applied field ¢ y=3.58 A/m (45 Og, L
#c=1 andB,=1 one dimensionless time unit is the same,
about a millisecond. Throughout this paper we use the con-
vention that one dimensionless time unit is 1.0 ms.

In Eqg. (4) Brownian motion enters a¥' R, , where the FIG. 1. Shear simulations in a uniaxial field &t=30% show
dimensionless constadt =2 fg/f.. In terms of the dimen- the stress is nearly independent of Mn for «, indicating a shear
sionless parametex=2af./kgT the dimensionless thermal thinning viscosity. Brownian motion decreases the stress signifi-
force is thusl)’ =4)\;1\/27D/37 where the characteristic dif- cantly at low Mn.
fusllorltim?lséTD_a £6Dt' Using th_e Ea’sy derived relation of thek-th particle. The work done per unit time by the fluid
o/ T=1333" " “(71/7)° then gives\=%53""“(7,/7). To re- i N 0 ) :
move the effect of the correlation time on temperature we®" this particle isv,=—F,-v,. The increase in energy loss
define the parametel=1J'/\/7/7, to obtainA=2%J"2 The P€ unit time is, per unit volumew=(3¢/4ma”)(~F
simulations we report are over the rande0.10-0.45, ~\_/k>. In S|mpl_e shear the un_perturbed fluid velocity field is
which thus corresponds to the range: 66.7— 3.3. given by Vo= yzx sow=(3¢y/4ma’)(—Fy,z,). To relate

In our simulation method we drop the effect of particle this energy dissipation per unit volume to the suspension
inertia, which raises the issue of determining over what reviscosity consider two parallel plates of argaeparated by
gime of particle sizes we can expect this approximation to be distancen moving relative to each other at a shear velocity
correct. When a suspended particle in a fluid is acted upofv|=yh. The frictional force on the moving plate &
by an constant external force, the time needed for the particle- YA and the total work per unit time on the volurhé is
to accelerate to a fixed terminal velocity tig= m/6man,, F|v|=7¥?hA. Thus the excess work per unit volume due to
wherem s the particle mass; in terms of the particle densitythe particles isv= (57— 7,) ¥*= Ao ¥, which combined with
p this time isto=2pa?/97,. For an ER fluid consisting of 1 the above expression for the work gives the expression for
um diameter particles of density 2.5 g/énin a suspending the excess stregso = (3¢lama’)(— FykZk)- In terms of the
fluid with a viscosity of 1.0<10™2 poise, this acceleration normalized coordinates in E¢4), the stress is
time isty=0.14us. Now consider how far a particle might
move, relative to its own diameter, in this time. The terminal Ao=(3¢fJama®)(—fyizy), ©)
velqcny of the .part|clef is obtained by balaljcmg the eIectro'which is independent of particle size. The dimensionless
static force acting on it by the hydrodynamic drag. The elec—f. e . .

: g ‘ 2 ield-specific viscositjl] is
trostatic force between two particles is at a maximum when
the two particles are in contact along thaxis, and in this 9
casef .= 2 meok.a’B°ES. The distancedz a particle under ni=(n— 77¢)/¢7702EMH71<— frkZi) (6)
this force can travel in the timety is Az/2a
=(fJ/12ma’ny)ty. In an applied field of 1.0 kV/mm, with which is the relative viscosity increase due to the applied
k.B?=2, we obtaimAz/2a=1.5x 10" 4. Thus in this circum- field per unit volume fraction of particles, withy,= 7,(1
stance the particle has reached terminal velocity after moving- 2.5¢) the Einstein viscosity of a particle suspension.
only 0.015% of its diameter, and inertia can be safely ig-
nored. Becausdz/2axp(aE,/7)? inertial effects can be- IIl. RESULTS
come significant for very large, dense particles exposed 0 gjmylations in steady shear were done by first allowing
large fields in a low viscosity fluid, such as can occur in MR syspension to structure for 25 ms in the field without
fluids. shear. The shear was then turned on at the maximum Mason

number and held for 25 ms. The Mason number was then
progressively reduced over the next 950 ms to explore a

A simple argument for the fluid stress is as folloft$]. ~ range of Mn, and the stress was computed every 0.1 ms.

Let VE be the unperturbed velocity of the fluid at the location  Results of steady shear simulations in a uniaxial field are

AG/(99egKBPE/8)

W
I . RS R | 1 ) T R R

10-2
Mn

C. Fluid stress
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particles in shear flow, a description that is quite reasonable
given that the striped phase does not form when thermal
effects are strong. Rather than attempt to develop an accurate
description of thermal fluctuations, with the associated alge-
braic complexities, we focus on the simple case of induced
point dipoles and Stokes friction against the solvent. Local
field effects, multipolar interactions, and hydrodynamic in-
teractions, though useful in developing a quantitative model,
are not included, since we do not believe they will change
the conceptual description we present.

FIG. 2. A striped phase emerges at laigebut not at smalh. A. Athermal chain model

These structures are at the marginal value16.7. The left is at A few basic aspects of athermal chaiii§ must be re-
Mn=0.08, the right at Mr-0.002, and the views are along the field \jewed. We are specifically interested in computing the ten-
direction (z axis). sion in the chain as well as the “bond” angle relative to the

in Fig. 1 for a 30 vol.% solution and show that the stress is2PPlied field along the contour length of a chain. This prob-
essentially independent of Mason number over the range iféem should be solved self-consistently, but an iterative
vestigated in the absence of Brownian motion, indicating thénethod, which starts with a straight chain, is quite accurate.
expected shear thinning viscosi:~Mn ™. In the dimen- Consider an initially linear chain ofi2+1 spheres, num-
sionless units of this plot, the stress is about 0.25, which i®ered from—N to N, in steady statézero velocity inclined
somewhat lower than one would expect from the chairat an angled, to the applied field. The shear flow is in tke
model, where this amplitude would be about 0.5-1.0, dedirection, and the fluid velocity at positianis given byv;
pending on whether polydispersity is taken into accolint. =zyX. The hydrodynamic drag on each particlefis {v;
these simulations the stress per unit particle concentration igzhere assuming stick boundary conditions on the particles,
essentially constant untith=40vol. %, whereupon it de- the friction factor is{=6mnga, with 7, the solvent viscos-
creases with concentratignAs Brownian motion is intro- ity anda the particle radius. The hydrodynamically induced
duced the stress decreases at low Mason number, with thension in the chain between particies 1 andi is

apparently logarithmic dependence Ao=Aog[1 N

+¢glIncyMn] in the region where a dependence on Mn is " 2. 2 9

observed. This will cause the apparent shear thinning expo- tizkzzm o fim~6mnoa”y sinf; costo(N"=i%).  (7)
nentb of the field-specific viscosityye~Mn~" to be signifi-

cantly less than 1, perhaps accounting for the trends seen ifhe Stokes friction will also introduce a force tangential to
expenmenth data, where valut_as as smat_ba$2/3 are found  the chain, of magnitude

[6]. In fact, it was suggested in these cited studies that the

small exponents were due to the importancexpfand the N

simulations of Melros¢5], Guo[7] and Baxter-Drayton and si= > foy Oi~6mnay cos; coshy(NZ—i2) (8)
Brady [9] have concluded this as well. In the following we k=i+1

present a detailed model of thermal fluctuations, based on

chain dynamics. which also has a strong maximum near the chain center. To

A prominent feature of these simulations is the emergencéetermine the chain angle in the absence of thermal fluctua-
of a striped phasg2-5,7] at large\ and at concentrations up tions these forces are balanced against the dipolar forces.
to 40 vol. %, Fig. 2. These sheet-like structures are in the The angle at the chain center can be computed by balanc-
plane of the field and flow direction, i.e., orthogonal to theing the tangential hydrodynamic forces with the tangential
axis of fluid vorticity, and have also been observed experidipolar force in Eq(3),
mentally [16]. At small X this phase is not observed, even
when there is substantial fluid stress. The thermal effects in tan 6,=8MnN?. 9
these simulations are undoubtedly very complex, but the
striped phase seems to consist of a sheets of dense chains, T variation of the chain angle along its contour length is
in the discussion below we will simply ignore the over- also obtained by a force balance, with the first-order result
whelming structural complexities and attempt to gain some
insight into why the thermal effects are greatest at the lowest sind;=sin (1 —i%/N?). (10)
Mason numbers by considering a simplified chain model,
justified in part by the fact that the striped phase only existsinally, to ensure chain stability the radial component of the
at high\, where thermal effects are not strong. dipolar force must exceed the hydrodynamically induced ten-
sion, which at the chain center gives the maximum chain
IV. DISCUSSION

angle

To obtain an understanding of the effect of thermal fluc-
tuations, we consider the elementary model of a chain of tanocz\/ﬁ (11
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A chain at this tilt angle we call a critical chain, since it is at N1 N—i
the brink of failure, and its length is given byN2 r=2> —r,. (14)
~(BMn)~12 i=o N

At fixed Mason number, and ignoring thermal fluctua- The fragmentation rates are then just given by the inverse

tions, the chain length will increase until the maximum tilt th | lifeti — 1 wh { a standard
angle is attained, at which point further growth will cause the''€rmar lie imesI'y=r; *, where we expect a standard ac-

chain to break at the center, where the tensile forces are Wation process to determine the lifetime
maximum. The presence of chains increases the stress in the _

fluid by an amount that is approximately the torque density 7i= 7o; €XHAVi/KgT). (19
in the fluid, as can be shown from E@), if one uses ta@
=16MnN?/3, which insures that the field-induced torque bal-
ances the hydrodynamic torq@&ppendix B),

The computation of the activation energy; will be pur-
sued below. The prefactog; can be estimated as the time it
takes the two chain fragments to diffuse away from each
other by a distance of roughly the particle radiasry;
Ao =(3¢f/2ma’)tand cos 0 (120 ~a?6Dg;, where the diffusion coefficienDg;=Dy_;
+ Dy is the sum of the diffusion coefficients of the frag-
In an athermal fluid one can expect that the system wilments. Summing the Stokes friction along the chain, without

evolve to a steady state where chains aggregate to their ma)jydrodynamic interactions, give®y_; +Dn.;=(kgT/{)
mum stable length, attain the critical angle of Etl), then  <L(N=1) "+ (N+i)""]=2DN/(N"~i%), whereD, is the
fragment by breaking in the middle, to form chains of half diffusion coef_f|C|ent of_a part|_cle. Again c_alllng th2e time it
maximum length that tilt at an angle that is roughly 1/4 oft@kes a particle to diffuse its own radius~(a”/6D;)

the maximum, then reaggregate, etc. =(mnoa’kgT) we obtain the chain lifetime
4" 1-i/N o
B. Fluctuation-induced fragmentation =70y Eo 152N2 exp(—AV;/kgT) (16)
=

The above description ignores the effect of thermal fluc-
tuations, with the result that the chains are assumed to hav@ terms of the Peclet number P8 7ya®y/kgT=6AMn,
an infinite lifetime if they are beneath their critical angle. In
reality, chains will fragment, due to the combined effects of ] 1
shear and thermal fluctuations. At low particle concentra- yTo=3Pe. (17
tions, where the collision processes that allow chains to form

have long collision times, one would expect that thermak, make further progress in this model of parallel decay

fluctuations would start to prevent the formation of critical .h3nnels. we must estimate the activation energies along the
chains when the lifetime of a chain becomes significantlypain. '

shorter than the time it takes to create a critical chain ather-
mally. If the suspension is reasonably concentrated, these
collision times become very short, and the rate limiting step
for the generation of a critical chain, and thus stress, is the Rather than laboring to determine the potential energy
time it takes a chain to reach its maximum angle of inclina-surface of a chain in shear, we shall consider two elementary
tion relative to the applied field, which is roughly the recip- rupture mechanisms—tensile and shear—and simply take the
rocal shear raté/ 1. For such concentrated suspensions weowest activation energy. Implicit in the following is a subtle
thus invoke the stipulation that a chain cannot contributepoint: because the prefactors in E45) are just the chain
fully to the fluid stress unless its thermal lifetimés greater  rotational diffusion times, which are also the longest relax-

C. Activation energies

than the reciprocal shear rate of the solution: ation times of the chain, we shall assume that outside the
) perturbations we consider the chain has had time to come to
Ty=1. (13 mechanical equilibrium.

This condition is reasonable because of the strong, quadratic 1. Radial fluctuation

dependence of the chain angle on the chain length(®g. In a tensile break the energy required is that energy
when two half chains aggregate, they are at a very smalheeded to separate the particles sufficiently such that the ra-
angle relative to their maximum angle, and it will take a timedial component of their dipolar interaction force equals the
proportional toy ! for this rotation to occur. Still, we will tension on the chaifi]. The chain will then rupture because

ultimately find it necessary to modify this relation. the negative curvature of the dipolar interaction insures that
Thermal fluctuations can cause a chain to break anywhenge interaction force monotonically decreases with separa-
along its length. If a chain fragments between nodasdi tion, allowing the hydrodynamic tension to pull the chain

+ 1 it will break into two pieces, one of siZ¢—i and one of  apart. The chain tension at partigleEq. (7), is exactly bal-
size roughlyN+i. The rate at which the remaining larger anced by the radial dipolar force, E@®), at a particle sepa-
chain loses the smaller fragment of sike-i we call T’;. ration we callr*, and it is readily shown, using Eq®) and

The mass-weighted overall fragmentation rate is then (10), that
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1_0_'.\1;_"\' T ] AV, kg T=[V(d,6;*)—V(d,6)]1/kgT
i Tl e radial 1 3
NG, T tangential 1 _
0.8 approximation -} - EMCOSZ Oc,i— cos 6;*) (21)
l:; 0.6 ] and is actually comparable to, but somewhat smaller than,
é i ] the reduced radial fluctuation activation energy, EP),
% L again having a maximum value af
041 ] To proceed, we note, Fig. 3, that a direct comparison
I 1 shows that these complex expressions for the fragmentation
o2 i activation energies are very closely approximated by the
i i simple expression
oo, e AV, /kgT=\(1—tanf,,; /tanf.)~\
0 10 20 30 40
0 X[1—(tanf/tand.)(1—i%/N?)], (22

_ FIG. 3. A comparison shows that E@2) is a good approxima-  \here g, is the equilibrium chain angle at the chain center
tion to the exact the radial and tangential fragmentation energies. i tha presence of thermal fluctuations and shear, and is the
quantity that we now wish to obtain.
d sir? 6; 4
—-= —1 . (18

3
1- §S|n2 0i

re D. Chain angle and size

The chain angle and size can now be obtained. Substitut-
ing Eqg.(22) into Eq.(16) gives
This result gives * =d when targ,=/2/3, so that when the
center of the chain is at its critical angle it will rupture at D
contact, just as it should. And as the chgain angle depcreases to ™ ﬁexm\(l tanfe/tanéc) ], 23
zero, rupture will occur only at infinite separation, since in
this case the hydrodynamic tension is zero. The reduced agrhere we have passed to the continuum limit to obtain the
tivation energy for this rupture mode is then integral

AV; IkgT=[V(r{)—=V(d)1/kgT Q:4F

2
. 1jL(rexq oNtané /tané.)do.  (24)

1
=_-\(3cog #,—1)
2 Using the condition in Eq(13), we obtain, with Eq(17),

X11-

3/4
sir? ei/(l—gsinz 0i” ] (19 tanf,/tanf.=1+\"tIn(Pe/dA}), (253

Ne=N¢Vtanéb./tané.. (25b

An exact analytical solution to Eq$24) and (25) is not
apparent, but asymptotic and iterative solutions to this prob-
A tangential fluctuation will cause chain fragmentation if lem are possible. It is helpful th&l appears in the logarithm.

the fluctuation causes the radial component of the dipolar

force to be less than the hydrodynamic tension. Balancing 3. SmallA

the chain tension, Ec{.?)_, with the radial component of the For small \, Q~2.75-0.75\ tand,/tand,. To zeroth
dipolar force, Eq.(3), gives an expression for the rupture order

angle 6;*

and the maximum value is.

2. Tangential fluctuation

— -1
(3 cog 6;* —1)/sin6;* =2 sind, (20 tanfe/tanf=1+1""In(«Ps, (20
where the paramete#t~1/8 in our calculation, but really

where 6, ; is the unperturbed chain angle at ik particle, should be treated as a free parameter, since we have used
given from Egs.(9) and (10) by the relation si,;  several estimates in obtaining this, including Eb3). Note
=8Mn(N?—i?)cosf,. If the chain is near its critical angle that this approximation is only valid whexn+ In(aPe)<1.
then coé #*=3/5, whereas if the chain angle is near zeroThis severe constraint limits the practical utility of this result
then coé6*=1/3. The reduced activation energy for this to very small\, where it is doubtful that an ER or MR effect
fluctuation is occurs.
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4. Large\ i " T
9 1.0

For largeX we make the approximation that the chain
angle will be close to the critical angle for reasonable Mason
numbers, giving

0.8
11 I
Q=4f ——exp(—?\)do~ a4/, (27 o b
ol+o < 0.6

c 0.
S |

1 D
tanf,/tanf,=1-+\"1In 5 PeVN/ @ 5 o

=1+\"tIn(Mn\3/ 7). (29

This solution is surprisingly accurate, as we shall demon- 9.2,
strate, but one should note that for the purpose of comparisot
to experimental data, an adjustable parameter should be pt :
into the log. Note that the simple dependence on the Pecle 0.0
number in Eq.(26) is significantly altered.

10-8 10-6 104 10-2
5. Iterative solution Mn

It is possible to solve Eq$24) and (25) numerically, but FIG. 4. Solutions to the self consistent E§3) (curves are
this would require solving the integral in E4) a tremen- compared to Eq(28). In each case the feature of low chain angle,
dous number of times. A better approach is to use the apand thus stress, at small Mn is observed, but the self-consistent

proximation, which is exact fop=\ tané,/tang.1, solutions soften the effect.
) 1 ) This range of Mn can be quite large for largemaking the
Q=4 0 17— p)do~4 0 exp(— o p)da slope of the thermal effect difficult to measure. For large
the slope of the thermal effect will be so small as to be
%4/4‘/1+(4p/77)2_ (29 unobservable. Let us suppose an experimental criterion of at

least a 10% change in stress per decade change in Mn.
This numerical approximation is really better than it looks, Roughly speaking, Eq:31) shows the range of the ER/MR

because the factor dropped from the integral decreasesffect to be ovein/2.3 decades of Mn. Thus our criterion is
roughly linearly from 1.0 to 0.5 on the intervfDd, 1], and 2.3A=0.1, or\<23.

becomes completely unimportant wheer1. Solving Egs.
(2539 and (29) iteratively shows that Eq28) is a good ap-

_ 8 E. Self-consistent model
proximation.

The simple description we have presented is not self-
6. Limits consistent, because E(L.3) stipulates that the thermal life-

We first note that the ER/MR effect, within the context of time be independent of the equilibrium chain angle. The self-

. consistent condition is
the chain model, only occurs for Mason numbers smaller

than Mr = £ \/2/3~0.1. Then note that our two approximate ry~tanf,, (32)
solutions, Eqgs. 26 & 28, are identical wher=1.77. Eq.(28)

indicates that the ER/MR effects become negligible when whereupon Eq(258 becomes the transcendental equation
+X " tIn(Mn* Y\3/7) =0, that isA\~1.9. Equation(26) at

best has a very restricted domain of utility, and we will now tanf,/tanf.+\ " " In(tand,/tand,)
focus on Eq.(28). 1
One can expect to observe a field-induced rheology that is =1+X"1In §pe/Q tan o, (33
not reduced by thermal fluctuations when
(I N3<Mn<Mn* . (300 andQis still given by Eq.(29). An immediate consequence

of this is that when\ tanf.<tané,, the relationship ta#,
A full ER/MR effect is possible when these limits are equal, *Pex exp(\) obtains, using Eq(26). [Thus at very low Mn
A~6.7. Equation(30) seems counter-intuitive, because it the viscosity is proportional tg=<\ exp()]. This linear in
shows that the regime where temperature plays no role i¥In relationship is followed by a logarithmic dependence of
quite modest, even for reasonable values\offhe regime the chain angle on Mn, as before. The effect of this self-
where an ER/MR effect can be observed, but is affected bgonsistency on the tafy curves is quite significant, as shown

thermal fluctuations, is in Fig. 4. The largest changes occur at smgllwhich is
where experiments will most readily detect thermal effects.
mIN3X e A< Mn<Min(\/7/\3,Mn*). (31 To some extent, this condition of self-consistency is prob-
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APPENDIX A: CORRELATED THERMAL
FLUCTUATIONS

e

—-

o
T

There are a number of problems in implementing Brown-
ian motion into a simulation where one is integrating a first
order differential equation, so a description of how we chose
to do this is useful. This is not the only possible approach,
but it is a method that allows one to mimic the effect of
particle inertia without resorting to a second order differen-
tial equation.

The equation of motion of a Brownian particle[ik7]

e

=

=
T

Ac/(9egk BPE/S)

0.05 -

0.00

Lo
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

|’. N mv=—¢v+Fg(t), (A1)

wherev is the particle velocitym is the particle mass, and
{=6mnpa is the friction coefficient of a particle of radius

FIG. 5. Uniaxial simulation data make a master curve on axefidainst a liquid of viscosityy,. Fg(t) is a stochastic force
suggested by Eq28). The data ah = 3.3 (to the lefy do not col-  that is normally considered to have a time correlation func-
lapse as well as the others £6.3,8.8,10.7,16.7,29.6), but this is tion that is a delta function. The time correlation function of
expected based on E(B3). the diffusing particle i§17]

(v(0)-v(t))=(3kgT/m)exp —t/7) (A2)

(32N 1A

lematic; when the equilibrium chain angle becomes very
small, the lifetime in Eq(32) will be much shorter than the . . . . i
chain collision times, so that chains will not form in the first vyhere the relaxation time is=m/{. Using the Kubo rela
. . . . tion [17]
place. From primitive considerations of shear-driven aggre-
gation we deduce that the chain collision time is of order 1 (=
Ty~ ¢~ 1, suggesting that using the self-consistency condi- Dt=§f (v(0)-v(t))dt (A3)
tion at low chain angles might not be appropriate. 0

_ _ _ then gives the Stokes-Einstein relation for the translational
F. Comparison to simulations diffusion coefficientD ;=kgT/Z. Thus it is the persistence of

The thermal chain model does a good job of predictingMotion of a particle acted upon by a uncorrelated stochastic
the trends seen in Fig. 1, including the logarithmic depenforce that is responsible for a finite diffusion coefficient. In
dence on Mn. A parameter-free Co||apse of all the Simu'atiorﬁome sense the situation is Subtle; the diffusion coefficient of
cessful, as shown in Fig. 5. To scrutinize the agreement igtion time is proportional to the mass, and the amplitude of
further detail would require the compilation of more simula- the velocity autocorrelation function is inversely propor-
tion data, to obtain better statistics. Still, it must be emphational to the mass. . 3 .
sized that a complete description of thermal effects should The relaxation time for a m diameter silica sphere in
address the issue of the chain growth kinetics. water is 5.5 10_7 S, but we would eXpeCt an applled field of
1.0 kV/mm to structure silica spheres in such a solution on
millisecond time scales. In our simulations we set the dis-
crete time step to a maximum of X0 °s, so the natural

In steady shear a striped phase readily forms for large time scale for Brownian motion is thus much faster than the
and when Mn is large. For small, the striped phase does time scales we wish to investigate. A completely physical
not form, even at the highest Mn. Fer-15 a striped phase simulation of field-induced rheology with Brownian motion
only forms at the highest Mn. The effect of thermal fluctua-is not feasible and a practical method is needed.
tions on the uniaxial field-induced rheology is essentially We start with the first-order differential equatiofv
logarithmic in Mn, and can be accounted for by the thermal=Fg(t), obtained by dropping the inertial term. Fi(t) is
chain model. considered to be a stochastic force with a delta function time
correlation function, then the diffusion coefficient of a par-
ticle will now depend on the discrete time step used to solve
the equation. For example, consider the simple one dimen-

Sandia is a multiprogram laboratory operated by Sandigional case wher€&g(t)=fgs;, ands; is a simple uncorre-
Corporation, a Lockheed Martin Company, for the Unitedlated random variable that is eitherl during thei-th time
States Department of Energy under Contract No. DE-ACO4step. Then during the timAt the particle will move a dis-

V. CONCLUSIONS
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tanceAx=(fg/{)At. Over a total time the number of steps nearest neighbor dipole interactions. But if this is done, one
will be N=t/At and from the theory of random walks the ¢an easily show that the dipolar force on tite particle,
mean square displacement will b)ez)=NAx2=(fB/§)2At which is the sum of the dipolar forces due to its nearby
-t. Thus the diffusion coefficiend,= 1/2(f5/¢)2At has an neighbors, is zero. Thus the quantity in the brackets is thus
unphysical dependence on the discrete time step. A Simp@pparently zero in_ this linear gpproximation. This dire situa-
way to handle this is to scale the amplitude of the Browniarfion ¢an be remedied by lumping the two particle forces—the
force by fgx At~ Y2 However, because the time step is al-dipolar and hard sphere—into a single total force acting on
lowed to vary in our simula’éion method. this can lead totheith particle,F;. This force is due to the interactions with
divergent force amplitudes that can potentially create stabilPOth neighbors. Because inertia is negligible, this force is
ity problems when two “hard” spheres are nearly in contact.€xactly balanced by the Stokes friction against the solvent,
To avoid stability problems we have taken a different ap-Fi —¢(Vi—V¢) =0. For a stationary chain the particle velocity
proach. Let us write the Brownian force Bg(t)=fgR (1) is z_ero_andFi: —{v;. To counterbalance this force a _reall
whereR (t) is a time-correlated random variable whose au-chain simply must have curvature, so that the tangential di-
tocorrelation function has a decay time Using the Kubo polar interactions caused by its neighbors are not equal and
relation we then haveD,=(fg/{)2fE(R, (0)R, ,(1))dt opposite: an initially linear chain in shear flow will simply
7,X 7,X o e .
where we have used the isotropy of space to ob{Rif{0) deform until it assumes the shape closel_y given by(EEq)._ .
RA1)=3(R, (0)R, ((t)). If our time correlated variable This problem is avoided by simply using the supposition
is r;ormalizedfguch tTHXE(IR (0)R.,(0))=1, then the relax- that the chain is stationary, then for any chain shape use Eq.
ation time is7= (R (6’;R (tTj);dt and,D —(fal0)?r (5) or its dimensioned equivalent, to compute the stress with
—Jo X 7,X ’ t—\'B .

The amplitude of the Brownian force is nofg=kgT{/7, Fi==¢vi. Usingz=2acosf, Eq. (5) becomes
and so can be controlled by a judicious selectiorr.of Ao =18¢ 5,y cos 6<k2>,

To construct the correlated random variable we start with _
the primitive uncorrelated random variabde, with (s;s;) ~ Then the relation
= ¢jj . Define the functionl’;=(1—e¢)I';_;+es; and note N
that by a straightforward calculation the exponential correla- (k3= Nflz K2~ ENZ
tion (I'\T'; ;) =[&/(2—€)](1—¢&)¥ is obtained. If we leR; =1 3
=I'J(2—¢)/e then (RR;,)=(1—¢)* and 7~&¢~ 1. In
practice, the correlation time is chosen to be larger than th S _ el
maximum discrete time step of2s, but smaller than the ms qu' (12, Vgh'gh, in electrostatic units is the resulto
time scale of structural evolution. We chose 48, so on = s$&okcB°Egsin20 published in a previous papdd].
times scales short compared to this ballistic motion occuréThis expression for the chain angle is not the same as Eq.
and the effect of particle inertia on diffusion is obtained (9). which is for the central angle of a curved chain, the
without resorting to a second-order differential equation.  distinction being that tafi=3 MnN? insures that the hydro-

(B1)

is used, which along with the result tar3 MnN?, gives

APPENDIX B: STRESS IN THE CHAIN MODEL

dynamic and electrostatic torques balance for a rigid ghain
A careful thinker will note that at the central particle in a real
chain with an odd number of particles, the dipolar and hard

The use of Eq(5) to compute the stress of a chain is sphere forces exactly balance. This implies that this particle
sufficiently subtle as to warrant clarification. It is often a must move at the fluid velocity at that point, which is of
convenient simplification to represent a chain as linear, witfcourse correct.
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